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Two approaches to detecting and tracking speakers in multispeaker
audio are described. Both approaches use an adapted Gaussian mixture
model, universal background model (GMM-UBM) speaker detection sys-
tem as the core speaker recognition engine. In one approach, the individual
log-likelihood ratio scores, which are produced on a frame-by-frame basis
by the GMM-UBM system, are used to first partition the speech file into
speaker homogenous regions and then to create scores for these regions.
We refer to this approach as internal segmentation. Another approach uses
an external segmentation algorithm, based on blind clustering, to partition
the speech file into speaker homogenous regions. The adapted GMM-UBM
system then scores each of these regions as in the single-speaker recog-
nition case. We show that the external segmentation system outperforms
the internal segmentation system for both detection and tracking. In ad-
dition, we show how different components of the detection and tracking
algorithms contribute to the overall system performance.  2000 Academic

Press
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1. INTRODUCTION

With the increasing availability of archived audio material comes an increas-
ing need for efficient and effective means of searching and indexing through this
voluminous material. Searching or tagging speech based on who is speaking is
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one of the more basic components required for dealing with audio archives, such
as recorded meetings or the audio portion of broadcast shows. Traditional ap-
proaches to speaker recognition, however, are designed to identify or verify the
speaker in a speech sample known to be spoken by a single person. For audio
indexing or searching, the basic recognition approach needs to be expanded to
handle both detection and tracking of speakers in multispeaker audio. In this
paper, we present two approaches for developing such multispeaker detection
and tracking systems.

The systems described below were developed for the multispeaker detection
and tracking spokes of the 1999 NIST speaker recognition evaluation [1]. The
data for these tasks consist of two person, conversational telephone speech from
the Switchboard-II corpus. Unlike Broadcast News audio, these data do not
explicitly contain nonspeech events like music, but present other challenges
such as handset variability. Given an audio file containing conversational speech
and given a hypothesized speaker, the task of detection is to determine if the
hypothesized speaker is talking in the audio file. This task is the same as
the traditional single-speaker detection or verification task except there is no
prior knowledge that the audio file contains speech from only one person. The
tracking task is to determine where in the audio file, if at all, the hypothesized
speaker is talking 2 . In both cases, performance is computed in terms of the
detection errors, misses and false alarms, and presented via detection error
tradeoff (DET) plots [3]. Details of the 1999 NIST evaluation data and metrics
can be found in [1].

In a canonical single-speaker detection system, a likelihood ratio statistic
between a model of the hypothesized speaker and a background model
representing the alternative hypothesis is computed using all speech in an audio
file since it is assumed that all the speech was produced by a single speaker.
When the audio file contains speech from more than one speaker, a likelihood
ratio statistic produced using all the speech is contaminated and is unreliable for
accurate decision making. An obvious approach to the analysis of multispeaker
speech is to segment the speech stream into speaker homogeneous segments
and then obtain likelihood ratio scores over these single-speaker segments:
in effect, turn the multispeaker problem into a sequence of single-speaker
problems. The segmentation of the speech into speaker homogeneous regions
can be accomplished in two ways. The internal segmentation approach uses a
sequence of time-varying values of a running likelihood ratio statistic computed
over short segments of speech to determine regions most likely to have been
produced by the hypothesized speaker. In the external segmentation approach,
a segmenter, which does not use knowledge of the hypothesized speaker, is used
to produce speaker homogeneous regions, generally by some form of sequential
speaker change statistic and/or blind source clustering of short speech segments.
Likelihood ratios are then produced over these putative single-speaker regions

2 The more general task of tracking speakers in an audio cut with no prior hypothesized speaker
information is not currently part of the NIST evaluations but has been addressed in several speech
recognition systems applied to the DARPA Broadcast News task [2]. The primary goal in these
DARPA systems is tracking and clustering for the adaptation of speech recognition models.
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for detection or tracking. In this paper we present systems which employ both
internal and external segmentation for the multispeaker detection and tracking
tasks.

The Gaussian mixture model, universal background model (GMM-UBM)
speaker detection system developed at MIT Lincoln Laboratory [4, 5] is used to
compute the likelihood ratio which is central to both the detection and tracking
tasks. The GMM-UBM system is a likelihood ratio detector consisting of a
large, speaker-independent GMM representing the alternative hypothesis (i.e.,
the UBM) and an adapted GMM representing the hypothesized speaker. This
adapted GMM is derived from the UBM via Bayesian adaptation using training
data. The GMM-UBM system is used as the likelihood ratio score generator for
the detection and tracking systems because it performs single-speaker detection
with high accuracy and because it imposes no temporal constraints on input
segment size. The system can therefore generate scores both for very short
speech segments and for agglomerations of segments which may be collected
from scattered locations throughout a speech file.

The remainder of the paper is organized as follows. In Section 2, we describe
in more detail the basic front end processing, including features and channel
compensation, and models of the GMM-UBM system used for the likelihood
ratio computation in the detection and tracking systems. Our internal and
external segmentation systems for detection and tracking are then described
in Sections 3 and 4, respectively. In Sections 5 and 6 we present experiments
and results on the NIST 1999 multispeaker recognition evaluation using our
detection and tracking systems. Finally, discussion of results and conclusions
are given in Sections 7 and 8.

2. FRONT END PROCESSING AND MODELING

The GMM-UBM system is essentially a likelihood ratio detector consisting of
front end processing to extract features from the input speech and compensate
for linear channel effects, followed by computation of the likelihood of these
features against models of the hypothesized speaker and a speaker-independent
alternative (see Fig. 1). The ratio (or difference in the log domain) of the
hypothesized and alternative model likelihoods is the likelihood ratio. In
addition, the likelihood ratio score can be further processed to normalize for
speaker and handset biases, such as by using HNORM [6].

FIG. 1. GMM-UBM likelihood ratio detector.
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The front end processing consists of three main steps: feature vector
extraction, speech detection, and channel compensation. The features and
compensation used in the front end processing were designed to operate on
telephone speech. Feature vectors are composed of 19 mel-cepstra and 19 delta
cepstra. These vectors are computed every 10 ms by windowing the input
speech with a 20 ms Hamming window, computing the log magnitude FFT, and
processing that through a 24 filter mel-filterbank. The 24 filters cover the 4 kHz
of the signal. The cepstra are then computed from the output of those mel filters
which cover the speech band of the typical telephone channel, 300–3300 Hz. The
zeroth cepstral coefficient is discarded, and finally, delta cepstra are computed
using a first order orthogonal polynomial fit over ±2 feature vectors from the
current vector [7].

Speech activity is detected using an adaptive energy-based speech detector [8].
This detector tracks the noise energy floor of the input signal and declares as
speech any feature vector with energy that exceeds the current noise floor by
a fixed energy increment. For Switchboard-type telephone speech, it removes
about 20–25% of the signal from conversational speech.

In the single-speaker GMM-UBM system, linear channel normalization is
achieved with either cepstral mean subtraction (CMS) or RASTA processing [9].
When there is only one speaker present in the speech, hence only one
channel characteristic, both of these methods have comparable performance,
but in the multispeaker case each speaker potentially has his or her own
channel characteristic. In multispeaker speech the mean values of the cepstral
coefficients computed over the entire audio file no longer provide an estimate of
the channel spectrum so a time-adaptive method of channel normalization, such
as RASTA processing, should be used. In fact, application of CMS can distort the
features since the (weighted) averaged long-term spectra of both speakers will
be subtracted from the features creating a new “channel” effect. We observed a
12.5% decrease in equal error rate (EER) in multispeaker detection when using
RASTA instead of CMS.

Both the hypothesized speaker and the alternative model are represented
by Gaussian mixture models. The alternative model is referred to as a UBM
and is trained using speech from a large number of speakers to create a
speaker-independent representation of the distribution of the feature vectors.
The speech used to create the UBM should match the characteristics of the
speech to be rejected during recognition. In single-speaker detection, where
it is commonly assumed that the gender of the unwanted imposter speakers
and the hypothesized speaker are the same, gender-dependent UBMs matching
the gender of the hypothesized speaker are typically used. To operate on
multispeaker audio, however, a gender-independent UBM is used since there is
no control over the gender of the competing speakers. In the system used in this
paper, a speaker- and gender-independent 2048-mixture UBM was constructed
as follows. First, two 1024-mixture, speaker-independent, gender-dependent
GMMs were trained, each using 60 min of speech selected from the 30-s tests
comprising the 1997 NIST evaluation. These 1024-mixture GMMs were then
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combined to form a gender-independent 2048-mixture GMM by agglomerating
the mixture components and renormalizing the mixture weights.

Given a UBM, speaker models are then derived using Bayesian adaptation.
Using the 2 min of training speech given for the speaker, a one pass, data-
dependent adaptation of the parameters of the UBM is used to derive the
speaker model. For the systems used in this paper, only the means of the mixture
components are adapted. This adaptation essentially adjusts the speaker-
independent feature distribution to match the speaker-dependent feature
distribution observed in the training data. Details of the adaptation equations
can be found in [4, 5].

3. INTERNAL SEGMENTATION

In the internal segmentation approach to multispeaker detection and track-
ing, a time-varying likelihood ratio score produced by the core GMM-UBM sys-
tem is used to both segment the multispeaker audio and produce a final score.
Given a sequence of feature vectors extracted from an audio file, {x1, x2, . . . , xT },
the GMM-UBM system produces a per-vector log-likelihood ratio,

LLR[t] = log(Lhyp[t])− log(Lubm[t]), (1)

where Lhyp[t] is the likelihood from the hypothesized speaker model and Lubm[t]
is the likelihood from the UBM for feature vector xt . Each element of LLR[t]
is computed from a single feature vector so the function LLR[t] is very noisy
and must be smoothed before it can be used for segmentation. The internal
segmentation systems operate by smoothing the time-varying log-likelihood
ratios and using this smoothed version to segment the input speech into
regions likely to contain the hypothesized speaker. As in the single-speaker
detection case, handset variability between training and testing data can cause
considerable errors in the likelihood ratio scores [5, 6], so a form of handset
normalization (HNORM) is applied to LLR[t] to help alleviate this problem.

3.1. Handset Type Estimation and HNORM

The direct application of HNORM to multispeaker speech is problematic.
In the single-speaker case, a handset detector computes the putative handset
label for a segment of speech. The appropriate HNORM parameters for a
hypothesized speaker model are then applied to the log-likelihood ratio score
for the speech segment. In multispeaker speech, it is not appropriate to assume
a single handset label for the entire audio file so we must use a time-varying
method for applying HNORM. Since the internal segmentation approach relies
on the log-likelihood scores to perform segmentation, it is important to apply
HNORM to the time-varying function LLR[t] prior to segmentation. In the
external segmentation approach discussed later, the speech is presegmented and
HNORM can be applied to individual or agglomerated segments as in the single-
speaker case.



98 Digital Signal Processing Vol. 10, Nos. 1–3, January/April/July 2000

The time-varying HNORM is applied as follows. On a sequence of feature
vectors extracted from the audio file after speech detection, a per-vector
likelihood is computed against a GMM of carbon-button transduced speech,
Lcarb[t], and electret transduced speech, Lelec[t]. The GMMs for carbon-button
and electret speech are trained using speech from the Lincoln Laboratory
Handset Database (LLHDB) [6]. Then, under the hypothesis that carbon-button
and electret microphones are equally probable, we compute the per-vector
posterior probability of carbon-button as

Pcarb[t] =
∏T/2
τ=−T/2Lcarb[t + τ ]∏T/2

τ=−T/2Lcarb[t + τ ] +
∏T/2
τ=−T/2Lelec[t + τ ]

. (2)

The value of T should be large enough to adequately smooth the noisy
likelihood functions but small enough to provide good time resolution for
detecting changes in handset labels. We have observed that a value of T = 300
(corresponding to 3 s) gives reasonable results.

Time-varying handset labels are then obtained by applying a threshold to
Pcarb[t],

HS[t] =
{

CARB, Pcarb[t] ≥ θhs

ELEC, Pcarb[t]< θhs,
(3)

where a value of θhs = 0.6 was used in the systems described herein. Finally,
HS[t] is passed through a 201 point (2 s) median filter to impose constraints on
switches between handset labels.

For a hypothesized speaker model, HNORM means and variances are
computed for electret and carbon-button speech using handset-labeled 3-s
segments from the 1997 NIST evaluation. HNORM scores on a multispeaker
audio file are then

LLRHNORM[t] = LLR[t] −µ(HS[t])
σ (HS[t]) . (4)

To minimize notation clutter, we will drop the HNORM designation on LLR[t]
when it is clear that we are using HNORM.

3.2. Speaker Detection Using Internal Segmentation

Our approach to internal segmentation for the speaker detection task is to
use the time-varying log-likelihoods to select regions where the hypothesized
speaker most likely is located and use these regions to produce a detection
score for the entire audio file. The HNORMed log-likelihood function, LLR[t],
however, is still a noisy function which must be smoothed to extract useful
segmentation information. For detection, we smooth this function using a 101
point boxcar filter, h[t],

LLRsm[t] = LLR[t] ∗ h[t], (5)
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where ∗ is the convolution operator. Note that for the detection system, LLR[t]
is computed only over feature vectors which passed the speech detector. Thus
not all time in the audio file is accounted for in the detection system.

Regions most likely to contain the hypothesized speaker are then obtained by
applying a threshold to LLRsm[t],

DET[t] =
{

HYP, LLRsm[t] ≥ θdet

BKG, LLRsm[t]< θdet.
(6)

The threshold θdet is a data-dependent threshold set such that 20% of LLRsm[t]
in the audio file is above the threshold (80th percentile of the distribution
of LLRsm[t] values). The value of 20% was chosen because it gave the best
performance on development data. The function DET[t] is further processed
with a 101 point median filter to remove unrealistically frequent decision
switches.

The final detection score for the audio file is computed as the average of the
smoothed log-likelihood ratio function over all regions detected as coming from
the hypothesized speaker,

S = 1
|{t : DET[t] =HYP}|

∑
{t : DET[t ]=HYP}

LLRsm[t]. (7)

Note that averaging the smoothed log-likelihood values instead of the un-
smoothed log-likelihood values has the effect of deemphasizing values at de-
tected segment boundaries and has been observed to improve performance 3 .

The above approach is related to a previously published approach to speaker
verification using multispeaker speech in [10]. In [10], likelihood ratio scores
were computed over nonoverlapping, fixed length segments and a detection
score was computed either by averaging the top N segment scores or all
segments scores which passed a fixed threshold (clip scoring). The above
internal segmentation detection system is a generalization of this approach. The
system in [10] can be derived from the above system by removing HNORM and
decimating LLRsm[t] by the duration of the boxcar filter.

3.3. Speaker Tracking Using Internal Segmentation

The tracking system is very similar to the detection system but with some
modifications. In the detection system it was sufficient to use only the regions
most likely to include the hypothesized speaker because a single detection score
was required for the entire audio file. This also means that feature vectors
detected as silence by the energy detector could be discarded prior to further
processing as there is little concern for removing low-energy speech regions.
The tracking system, however, must account for the presence or absence of
the hypothesized speaker throughout the entire audio file. In this case it is
necessary to be more careful about discarding low-energy speech regions as

3 This occurs because the values in LLRsm[t] are computed using overlapping windows of LLR[t].
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silence and to use the entire function LLRsm[t], not just a small subset of it.
In addition, HNORM is not used in the internal segmentation tracking system
as it did not improve performance. One likely explanation for this is that, unlike
the detection system which averages over a potentially large set of segments
in Eq. (7), the tracking system must report scores over short intervals and
HNORM is known to be less effective for short duration segments of speech.

In development testing we found that there were areas in the audio file that
our speech detector labeled as silence but the answer keys labeled as speech.
This resulted in a minimum miss rate of around 10%. Rather than tuning our
speech detector to match the speech detection of the answer keys (which were
machine generated and subject to change), we instead compute LLR[t] over all
vectors and let the log-likelihood values account for silence regions.

For the tracking system, LLRsm[t] is computed using a 251 point (2.5 s)
triangular filter. Empirically, this triangular filter gave better performance than
the shorter boxcar filter used in the detection system. Detected regions are
determined as in Eq. (6) using a threshold, θdet, to detect 40% of the vectors as
belonging to the hypothesized speaker (and 60% as not) and smoothing DET[t]
with a 101 point (1 s) median filter. The detection system uses a higher value
for θdet than the tracking system uses because the detection system scores only
the region most likely to contain the hypothesized speaker and it ignores the
rest of the audio file. The tracking system, on the other hand, must score
all regions of the audio file. In addition, the cost function used in the NIST
evaluation was optimized by operating the system with a 1–5% false alarm rate,
and using development data we found that setting θdet to detect 40% of the data
gave the lowest miss rate in this region. For each detected segment, temporally
connected regions with the same detection label, LLRsm[t], is averaged over the
segment and that average score is reported for the whole segment. This internal
segmentation tracking system is similar to the approach presented in [11].

As with the detection system, we can also simply use fixed-length segment
scoring for tracking. For this case, the smoothed log-likelihood ratio function,
LLRsm[t], can be decimated and tracking scores reported at regular fixed
intervals. We add a small negative bias to the score of segments which are
centered on a detected silence vector. Empirically it was found that using a
triangular or Hamming filter of 251 points (2.5 s) for smoothing LLR[t] and
reporting scores every 25 vectors (0.25 s) gave the best performance (decimation
was required to limit the size of scoring files sent to NIST). No single filter
duration gave the best performance at all DET points, rather different durations
give the best performance for different points on the DET curve. As shown in
the experiments section, the fixed segment approach had better performance
than internal segmentation on the tracking task and was used as our primary
system for the 1999 NIST evaluation.

It should be noted, however, that in a practical application of a tracking
system one would almost always need to select temporally connected regions
of speech from the sequence of fixed segment scores, thus using a system more
like the first internal segmentation tracking system. The better performance of
the fixed-segment tracking system can be attributed to the fact that no hard
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decisions of regions or production of a single score for a region was required.
This is, perhaps, a flaw in the scoring mechanism for the tracking task.

4. EXTERNAL SEGMENTATION

In the external segmentation approach the audio file is first segmented into
speaker homogeneous regions by an independent process before computing
log-likelihood values for detection or tracking. In this paper we use a blind
clustering approach described in [12] to generate homogeneous regions with
no prior knowledge of the hypothesized speaker. For speaker detection, we
score each homogeneous region as in the single-speaker case and then take the
maximum score as the overall detection score. For speaker tracking, the log-
likelihood value of the hypothesized speaker is computed for each region and
reported with the region’s segmentation times.

The external segmenter used in this paper is a hierarchical agglomerative
clustering system which works as follows [12]. The audio file is processed to pro-
duce 23 dimensional mel-cepstra feature vectors with no delta coefficients and
no channel compensation. Feature vectors from silence regions are removed. We
use different front-end processing for the external segmenter than for standard
speaker detection because we want to take advantage of channel differences be-
tween the speakers to aid in segmentation. The sequence of remaining feature
vectors is first partitioned into equal length segments (typically 100 vectors or
1 s). These segments form the initial set of clusters, each containing only one
segment. Agglomerative clustering then proceeds by computing the pairwise dis-
tance between all clusters and merging the two clusters with the minimum dis-
tance. This is repeated until the desired number of clusters is obtained.

The pairwise distance between clusters is based on the likelihood ratio
between the likelihood the segments in the two clusters were generated by
two different speakers and the likelihood the segments in the two clusters
were generated by the same speaker [13]. As introduced in [12], these
likelihoods are computed using tied GMM density functions. For each segment,
mixture weights to a common, fixed set of Gaussians are estimated. In these
experiments, we use a set of 64 Gaussians trained using the entire sequence
of feature vectors from the file being segmented. The use of tied GMMs
provides better density modeling for the segments than the standard approach
of using a unimodal Gaussian density. When two clusters are merged, new
mixture weights using the union of segments in both clusters are estimated
and distances to the remaining clusters are recomputed. Complete details of
this approach can be found in [12].

The output of the clustering is a collection of speaker-homogeneous regions
in the original multispeaker speech associated with each cluster produced. Since
this is a blind clustering approach, there is no guarantee that the final clusters
will represent different speakers, but the relatively long initial segments and
uncompensated channel differences between the speakers tend to bias the
clustering away from converging on phonetic similarity. Initial testing on two-
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speaker Switchboard speech found the clusters produced are 90% pure on
average.

For the NIST multispeaker speech it is known a priori that there are only two
speakers in the audio file. Thus the difficult task of determining the number of
speakers is not addressed. However, it is believed that the clustering approach
used will work well even with only a general idea of the number of expected
speakers since it was found that over clustering (in this case, using three to
six clusters) does not adversely affect performance for detection or tracking
and can actually provide better performance than exactly matching the number
of speakers in the audio file in some cases. There are, of course, several other
techniques possible for external segmentation [14, 15] which attempt to detect
the number of speakers present.

4.1. Speaker Detection Using External Segmentation
Once the audio file has been clustered, the speech associated with each cluster

is scored as in the single speaker case. The values of LLR[t] are averaged
across the cluster, the handset label is estimated for the cluster, and HNORM
is applied. The maximum hypothesized speaker score of all the clusters is used
as the detection score for the entire audio file. This process is shown in Fig. 2.
Although as the number of clusters increases, the chances of a spurious high
score of a cluster from a audio file not containing the hypothesized speaker
increases, we found that in practice a small increase in the number of clusters
did not significantly affect performance.

4.2. Speaker Tracking Using External Segmentation
In the speaker tracking problem the output of the external segmenter can be

used in one of several ways. The segmenter generates homogeneous regions of
speech such as regions 1, 2, and 3 in Fig. 3. One method of speaker tracking is to
compute scores across each of the three regions and to use that single regional
score for all time locations within the region. A second method is to individually
score the segments which compose the different regions (a, b, c, . . . in Fig. 3).

In the second approach when using the smaller segments (a, b, c, . . .) the
length of these segments can vary a great deal. The mean of the segment
score is normalized by dividing the score by the segment length (i.e., taking
the average score), but there is the additional problem that the variance of
scores generated from short segments will be much larger than the variance

FIG. 2. Speaker detection using external segmentation.
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FIG. 3. An example of homogenous regions generated by automatic clustering.

of the scores generated from longer segments. To account for this difference in
variance, we measured the variance of nontarget scores as a function of segment
length on development data. We then normalize both the variance and mean of
the segment score as a function of segment length. This normalization gives
a significant improvement in some parts of the DET curve. In particular, it
improves performance in the low false alarm rate region (for false alarm rates
less than 10%) and in the high false alarm rate region (for false alarm rates
greater than 80%). The length normalization has a negligible effect near the
EER point.

The best overall performance was from the first method in which one score
was computed over each region. This is not surprising because the performance
of speaker recognition systems improves when the test segment duration is
increased. The first method computes scores over relatively long segments,
while in the second method scores are computed over segments as short as 1
or 2 s.

In the tracking task we must also reinsert the silence regions when reporting
the final scores. As when tracking with an internal segmentation system, if
we give silence an arbitrary low score then there is a floor in the miss rate,
in this case around 7%. We handle this problem by scoring the silence region
with nearly the same method as the other regions. This requires estimating the
handset label during silence where the meaning of the estimate is questionable
because the GMMs for the handsets detector were trained with the silence
regions omitted. Nevertheless, using the handset estimate for the silence region
and applying HNORM does improve the overall system performance. The
silence regions tend to be shorter than the other regions so the scores generated
for silence regions have a higher variance than scores for the other regions. This
problem is addressed by clipping the silence scores to a value of 1.0. That is, if
the score during silence is greater than 1.0, the score is reset to 1.0.

5. SPEAKER DETECTION EXPERIMENTS

This section describes speaker detection experiments performed on multi-
speaker audio using both internal and external segmentation. The data set used
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is that of the two speaker detection task in the 1999 NIST evaluation [1]. The
data consist of conversational telephone speech with 1723 test conversations
that are each nominally 1 min in duration. There are 2 min of training data
for each hypothesized speaker. In our experiments, we present results based on
pooling scores from all 1723 test conversations.

The speaker detection system using internal segmentation described in
Section 3.2 was the primary system submitted by MIT Lincoln Laboratory in
the two speaker detection task of the 1999 NIST evaluation. The performance of
the system is shown in the DET plot in Fig. 4, where the dashed line denotes the
system performance without HNORM and the solid line shows the performance
with HNORM. The use of HNORM reduces the EER from 19.2 to 16.8%.

The statistical significance of the results in Fig. 4 are shown by plotting a
rectangle around the EER point of each curve indicating the 90% confidence
interval. This rectangle is computed under the assumption that each detection
test is an independent trial and that misses and false alarms are decorrelated
errors. The 90% confidence rectangle at the operating point (Pmiss,Pfa) is
bounded by the values

Pmiss ± 1.645

√
Pmiss(1− Pmiss)

Ntgt
and Pfa ± 1.645

√
Pfa(1− Pfa)

Nimp
, (8)

where Pmiss is the probability of miss, Pfa is the probability of false alarm,
Ntgt is the number of target trials (3158), and Nimp is the number of imposter
trials (34,748). The confidence bound is tighter along the false alarm axis
because there are roughly ten times the number of imposter trials as there are

FIG. 4. Two-speaker detection using internal segmentation. The solid line is the performance
of the system with HNORM and the dashed line is the performance without HNORM.
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target trials. The nonoverlapping error rectangles indicate that the performance
improvement from the application of HNORM is statistically significant.

The external segmentation system was developed too late for submission
in the 1999 NIST evaluation and is thus not an official submission, but
in comparison to our primary submission it has superior performance. Two
important parameters that must be set for the external segmenter are the initial
segment size and the number of clusters into which the segments are grouped.
We examined initial segment sizes ranging from 0.25 s to 1.25 s and found that
the performance was not very sensitive to the segment size. We also varied
the number of clusters from two to six and found that the performance varied
negligibly when using between two and four clusters, although for five and six
clusters the performance was slightly reduced. We then chose 1 s as the initial
segment duration and three as the number of clusters. The use of three clusters
on two speaker speech has been observed to help with lopsided conversations.

Figure 5 shows the performance of the external segmentation detection
system with and without HNORM. The use of HNORM is seen to reduce the
EER from 17.5 to 15.3%. As in the previous DET for internal segmentation, we
show the 90% confidence rectangle around the EER point, indicating again that
the performance improvement is statistically significant.

The performance of the internal and external segmentation systems are
compared in Fig. 6. The external segmentation system with HNORM, which
is plotted with the thick solid line, outperforms the internal segmentation
system with HNORM, which is plotted with the thick dashed line. The EER
of the external segmentation system is reduced over the EER of the internal
segmentation system from 16.8 to 15.3%.

FIG. 5. Two-speaker detection using external segmentation. The solid line is the performance
of the system with HNORM and the dashed line is the performance without HNORM.
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FIG. 6. Comparison of two-speaker detection systems. The thin dashed line shows DET
performance for the system with no segmentation, the thick dashed line for the internal
segmentation system, the thick solid line for the external segmentation system, the thin solid line
for the perfect separation system, and the thin dashed-dot line for the single speaker detection
system operating on the individual sides of the two-speaker conversations.

The DET in Fig. 6 also contrasts the performance of these systems with lower
and upper bounds of performance. The lower bound (upper right plot) shown
as the thin dashed line, corresponds to no segmentation where all speech is
scored as if in the single-speaker case. Even with no segmentation, HNORM
is applied by estimating a single handset likelihood from all speech frames 4 .
Using HNORM with no segmentation gives a uniform improvement in the
DET curve and reduces the EER from 20.2 to 19.0%. While comparison to
the internal and external segmentation system DETs does indeed show these
system impart a large improvement in performance, it is interesting to note that
the performance in this worst-case scenario is not as poor as might be expected.

The upper bound of performance, shown as the thin solid line in Fig. 6,
is the case when using perfect separation of the two speakers. This perfect
separation is generated by scoring each side of the multispeaker conversation
separately as a single-speaker test and then taking the maximum score
as the overall detection score. The individual sides of the multispeaker
conversations are obtained by using the appropriate test files from the
one-speaker evaluation. Comparing the perfect separation system to the
internal and external segmentation systems shows the loss attributable to poor
segmentation in both systems. The perfect separation system has an EER of
11.8% compared to an EER of 15.4% for the external segmentation system. The

4 The means and variances for this normalization are estimated from training data using
utterances with the correct handset label and a duration of about 30 s.
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perfect separation DET also highlights that even with the segmentation task
removed, errors are not negligible, indicating there are substantial gains to be
made on the core detection system.

Finally, the single-speaker detection performance using only the individual
sides of the multispeaker conversations is shown in Fig. 6 as the lower dashed-
dot line. The EER of the single-speaker detection system is 9.5% compared to
11.8% for the perfect separation curve. This increase in error can be attributed
to the additional maximum function used in the perfect separation system to
produce a single score for the entire multispeaker conversation. Considering
that the two scores coming into the maximum function are outputs from two
independent detectors each operating at (Pmiss,Pfa), then it can be shown that
the corresponding operating point after the maximum function is 5

P̂miss = Pmiss ∗ (1− Pfa)
N−1 and P̂fa = 1− (1− Pfa)

N , (9)

where N = 2. Applying this transform to the single-speaker DET curve produces
an almost identical match to the perfect separation DET curve.

6. SPEAKER TRACKING EXPERIMENTS

In this section we compare the use of internal and external segmentation
for speaker tracking. The performance of the speaker tracking systems is
evaluated on the two-speaker, conversational, telephone speech from the 1999
NIST evaluation [1]. The test conversations for the tracking experiments are a
subset of the conversations used in the detection experiments. In the tracking
experiments 1000 of the 1723 test conversations are used and the number of
imposter speakers is reduced from 20 per conversation to 2 per conversation.
The external segmentation system has better tracking performance than the
internal segmentation system, but it is shown that performance can still be
substantially improved by better separating the two speakers.

Figure 7 shows the DET plots of tracking performance for our primary and
secondary systems in the 1999 NIST evaluation. The primary system is a
fixed-segment version of the internal segmentation system that uses a 2.5-s
smoothing filter and reports scores every 0.25 s. The secondary system is the
complete internal segmentation system as described in Section 3. For the fixed-
segment system, segment sizes of 0.5–3.5 s were examined and about 2.5 was
optimal on the development data. A longer segment gave better performance
for false alarm rates greater than 2–3% but the cost function for the NIST
task required operating at about a 1% false alarm rate. We tested various
reporting intervals and determined that a 0.25-s reporting interval gave the
best overall performance. This system performs slightly better than the internal
segmentation system for false alarm rates less than 50%. The EER for this
system is 26.7% while the EER for the internal segmentation system is 27.7%.

5 These equations hold in general for a stack of N independent detectors.
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FIG. 7. Two-speaker tracking. The solid line is the fixed segmentation system and the dashed
line is the internal segmentation system.

Neither of these systems uses handset normalization, as it was not found to help
performance.

We do not show the 90% confidence intervals around the EERs for the
tracking experiments. These experiments are scored by integrating the miss
and false alarm regions over time so discrete, independent trials are not clearly
defined for application of Eq. (8).

The external segmentation system for tracking uses the same procedure for
clustering the data as does the external segmentation system for two-speaker
detection. We tested various initial segment durations from 0.25 to 1.25 s to
determine which was ideal for the tracking system and found that system
performance varied only slightly as we varied this parameter. We also varied the
number of clusters from two to six and found that this parameter did not have
a large impact on system performance. We then chose a 0.5-s initial segment
duration and three clusters since this appeared to have the best performance.
We found that a small performance gain could be achieved by estimating the
handset for each cluster and applying HNORM. This gave a 2–3% reduction
of the miss rate for false alarms between 5 and 20% although it gave no
improvement in other regions of the DET curve.

In Fig. 8 the DET curves for the above system are shown for two different
methods of handling the silence regions. For the dashed curve the silence
regions are given an arbitrarily low score and for the solid curve the silence
regions are scored in the same manner as the other regions but the score is then
clipped to 1.0. That is if the score is greater than 1.0 it is given the value 1.0. In
the first case, when silence is given an arbitrarily low score, the miss rate has a
floor of about 7%. This indicates that the silence marks generated by our speech
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FIG. 8. Two-speaker tracking external segmentation. The dashed line is giving silence regions
an arbitrarily low score. The solid line is scoring silence regions but clipping the score.

detector do not match the silence in the answer key. To account for this problem
we score the silence region and clip the score to keep regions we have scored as
silence from false alarming too readily. As seen by the solid curve this approach
provides a lower miss rate for false alarm rates above 20%.

The performance of the fixed and external segmentation systems is compared
along with the performance of ideal segmentation in Fig. 9. The thick dashed
line is for the fixed segmentation system while the thick solid line is for
the best external segmentation system which was more recently developed.
This new system has a substantial improvement in performance for false
alarm rates between 5 and 20%. The thin solid line is the performance of an
ideal segmentation system. In the ideal segmentation there are four regions
generated from the answer key containing: speaker A only, speaker B only, the
overlap of speaker A and B, and silence. The first three regions are scored as
when automatic external segmentation is used and the silence region is given an
arbitrarily low score. The ideal segmentation system indicates the performance
of the GMM-UBM scoring system without regard to the problem of segmenting
the data. It shows that a great deal of performance improvement can be gained
by improving segmentation of the multispeaker data.

7. DISCUSSION

There are two general observations we make from the experiments. First,
it appears for both detection and tracking, the use of the external segmenter
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FIG. 9. Comparison of two-speaker tracking systems. The thin black line is tracking using the
ideal segmentation. The dashed line is fixed segmentation and the thick solid line is the clustering
based system.

gives better performance than the use of internal segmentation. This relative
improvement is greater for detection than for tracking. It appears that in
the internal segmentation system the use of the time-varying log-likelihood
ratio function to both determine segments and validate those segments
reduces performance. In the external segmentation systems, given reasonable
performance from an external segmenter/clusterer, the log-likelihood ratio
function is used only to validate precomputed segments.

Our second observation is that, as in the single-speaker detection task,
the application of HNORM greatly improves performance for multispeaker
detection. For tracking, HNORM provided none to minor improvement. One
possible explanation for this difference is that in detection multiple segments
throughout a file can be agglomerated together for computing a final detection
score. In tracking local detection scores over short duration segments are
required. It has been observed on single-speaker detection experiments that
HNORM is not very effective for short duration (<3 s) speech segments.

In further experiments using external segmenters, we also examined the use
of gender identification and handset identification as methods of segmenting a
two-speaker audio file. These methods, of course, can only be used for mixed
gender and mixed handset conversations. The gender identification system
actually performed better than the automatic clustering system on the mixed
gender conversations from the 1999 evaluation data. Handset identification, on
the other hand, was not a reliable method of segmenting the mixed handset
conversations.
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8. CONCLUSIONS

In this paper we have presented approaches to speaker detection and tracking
with multispeaker audio. We have developed systems for both tasks using
internal and external segmentation techniques and applied them to the 1999
NIST evaluation data. From the experiments, we found that the use of
an external segmentation approach produces improved performance over an
internal segmentation approach for both detection and tracking. While these
systems produce state-of-the-art performance on the tasks, there is considerable
room for improvement.

Two factors dominate the performance of both detection and tracking in
multispeaker speech: the quality of the segmentation and the underlying
likelihood ratio scoring. Comparison of results from our best performing
systems to the ideal segmentation systems indicates that there does indeed exist
room for improvement in the segmentation. The current external segmenter
which uses blind clustering, is a simple approach which can be refined using
perhaps multiple segmentation passes as is done in [12]. However, even with the
segmentation component removed, performance is far from perfect indicating a
real need for improvement in the underlying single-speaker detection scoring.
With the introduction of HNORM to the multispeaker task we have improved
robustness to handset variability, but our modeling and recognition are still
vulnerable to nonspeaker variabilties. They rely on acoustic measurements
made over short durations and these features are vulnerable to changes in
the acoustic environment. Future work will concentrate on improving the
robustness of the underlying adapted GMM-UBM system and also on the
introduction of more complex features that are less vulnerable to changes in the
acoustic environment, such as speaking rate and interactions between speakers.
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